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ABSTRACT

Wavelets can provide a basis set in which the basis functions are con-
structed by dilating and translating a �xed function known as the mother
wavelet. The mother wavelet can be seen as a high pass �lter in the frequency
domain. The process of dilating and expanding this high-pass �lter can be
seen as altering the frequency range that is \passed" or detected. The pro-

cess of translation moves this high-pass �lter throughout the domain, thereby
providing a mechanism to detect the frequencies or scales of information at
every location. This is exactly the type of information that is needed for
e�ective grid generation. This paper provides motivation to use wavelets for
grid generation in addition to providing the �nal product: source code for

wavelet-based grid generation.
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1 Introduction

Wavelet methods are now roughly 10 years old, and there often remains a

large gap between a theoretical wavelet paper and the needs of an applied

scientist. This paper is an attempt to bridge this gap by providing a short

review of wavelet theory followed by a wavelet-based grid generation subrou-

tine. This subroutine has been broken o� from a numerical method known

at the Wavelet-Optimized Finite Di�erence (WOFD) method, see [6], and

can be used as stand-alone unit. Let us begin by reviewing WOFD.

The logic behind WOFD is as follows: i) If one examines the physical

space e�ect of an adaptive wavelet Galerkin method, one observes a non-
uniform grid �nite di�erence method, see [3]. ii) WOFD attemps to mimic
this physical-space equivalent of a wavelet Galerkin method by using wavelets
to choose a numerical grid and performing the wavelet-equivalent �nite di�er-
ence method on this grid. iii) By performing all calculations in the physical
space one avoids problems that wavelet Galerkin methods generally have

with boundaries and non-linear terms, see [5], [6].
The grid selection mechanism presented here is very 
exible and is inde-

pendent of the physics which might be associated with a particular problem.
Let us begin by de�ning wavelets in order to give the reader some idea of the
reasoning which led to the WOFD grid re�nement mechanism.

2 De�nition of Daubechies-based Wavelets

This section will introduce wavelets and indicate how the theory which is

derived for a continuous independent variable can be reduced to �nite di-
mensions.

2.1 The Classical Daubechies Wavelet Theory

To de�ne Daubechies-based wavelets, see [1] for the original work, consider

the two functions �(x), the scaling function, and  (x), the wavelet. The

scaling function is the solution of the dilation equation,

�(x) =
p
2
L�1X
k=0

hk�(2x� k); (1)

1



where �(x) is normalized
R
1

�1
�(x)dx = 1, and the wavelet  (x) is de�ned in

terms of the scaling function,

 (x) =
p
2
L�1X
k=0

gk�(2x� k): (2)

One builds an orthonormal basis from �(x) and  (x) by dilating and

translating to get the following functions:

�
j
k(x) = 2�

j

2�(2�jx� k); (3)

and
 
j
k(x) = 2�

j
2 (2�jx� k); (4)

where j; k 2 Z. Here j is the dilation parameter and k is the translation
parameter. The coe�cients H = fhkgL�1k=0 and G = fgkgL�1k=0 are related by
gk = (�1)khL�k for k = 0; :::; L � 1. All wavelet properties are speci�ed

through the parameters H and G. If one's data is de�ned on a continuous
domain such as f(x) where x 2 R is a real number then one uses �jk(x)
and  

j
k(x) to perform the wavelet analysis. If, on the other hand, one's

data is de�ned on a discrete domain such as f(i) where i 2 Z is an integer
then the data is analyzed, or �ltered, with the coe�cients H and G. In
either case, the scaling function �(x) and its de�ning coe�cients, H, detect

localized low frequency information, i.e., they are low-pass �lters (LPF),
and the wavelet  (x) and its de�ning coe�cients G detect localized high
frequency information, i.e., they are high-pass �lters (HPF). Speci�cally, H
and G are chosen so that dilations and translations of the wavelet,  j

k(x), form

an orthonormal basis of L2(R) and so that  (x) has M vanishing moments

which determines the accuracy. In other words,  j
k(x) will satisfy

�kl�jm =
Z
1

�1

 
j
k(x) 

m
l (x)dx; (5)

where �kl is the Kronecker delta function, and the accuracy is speci�ed by
requiring that  (x) =  0

0(x) satisfy

Z
1

�1

 (x)xmdx = 0; (6)
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for m = 0; :::;M�1. Under the conditions of the previous two equations, for

any function f(x) 2 L2(R) there exists a set fdjkg such that

f(x) =
X
j2Z

X
k2Z

djk 
j
k(x); (7)

where

djk =
Z
1

�1

f(x) 
j

k(x)dx: (8)

For Daubechies wavelets the number of coe�cients in H and G, or the

length of the �lters H and G, denoted by L, is related to the number of
vanishing momentsM by 2M = L. The coe�cientsH needed to de�ne com-

pactly supported wavelets with a higher degree of regularity can be found in
[1]. As is expected, the regularity increases with the support of the wavelet.
The usual notation to denote a Daubechies-based wavelet de�ned by coe�-
cients H of length L is DL.

It is usual to let the spaces spanned by �jk(x) and  
j
k(x) over the parameter

k, with j �xed, be denoted by Vj and Wj respectively,

Vj =
span

k2Z
�
j

k(x); (9)

Wj =
span

k2Z
 j
k(x): (10)

The spaces Vj and Wj are related by,

::: � V1 � V0 � V�1 � :::; (11)

and

Vj = Vj+1
M

Wj+1: (12)

The previously stated condition that the wavelets form an orthonormal

basis of L2(R) can now be written as,

L2(R) =
M
j2Z

Wj: (13)
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2.2 Restriction to Finite Dimensions

Of course, in�nite sums are meaningless when one begins to implement

wavelet analysis on a computer where there is always a largest scale, a small-

est scale, as well as boundaries. That is, one must limit the range of the scale

parameter j and the location parameter k. The location parameter k can be

limited by, say, imposing periodic boundary conditions which would require

that k also be periodic or by building special scaling functions and wavelets

at the boundaries.

Consider now the scale parameter j. As stated above, the wavelet ex-
pansion is complete in the sense that an arbitrary function with �nite energy
can be represented by `summing up' the orthogonal subspaces Wj which con-
tain frequency components related to the parameter j: L2(R) =

L
j2ZWj.

Therefore, any f(x) 2 L2(R) can be written as,

f(x) =
X
j2Z

X
k2Z

d
j
k 

j
k(x):

In this expansion, functions with arbitrarily small-scale structures can be
represented. In practice, however, there is a limit to how small the smallest

structure can be. This would depend, for example, on how �ne the grid is in
a numerical computation scenario or perhaps what the sampling frequency
is in a signal processing scenario. Therefore, on a computer an expansion
would take place in a space such as,

V0 = W1 �W2 � . . .�WJ � VJ ; (14)

and would appear as,

PV0f(x) =
X
k2Z

sJk�
J
k (x) +

JX
j=1

X
k2Z

d
j
k 

j
k(x); (15)

where, again, djk =
R
1

�1
f(x) j

k(x), and s
J
k =

R
1

�1
f(x)�Jk (x). In this expan-

sion, scale j = 0 is arbitrarily chosen as the �nest scale that is needed, and
scale J would be the scale at which a kind of local average, �Jk (x), provides

su�cient large scale information.

4



3 From Wavelets to Grid Generation

The idea of using wavelets to generate numerical grids began with the obser-

vation in [3] that the essence of an adaptive wavelet-Galerkin method is noth-

ing more than a �nite di�erence method with grid re�nement. So, instead of

letting the magnitude of wavelet coe�cients choose which basis functions to

use in a Galerkin approach, let the same coe�cients choose which grid points

to use and then think of the wavelet method in a collocation sense.

In other words, suppose a calculation begins with N evenly-spaced sam-

ples of a function ~f and that some quadrature method produces N scaling

function coe�cients on the �nest scale denoted by V0. If the spacing between
adjacent values in the vector ~f is �x then this is also the physical-space
resolution of any calculation done in V0. Now, decompose V0 once to get
V0 = V1 � W1. Similarly speaking, the physical space resolution of V1 is
2�x and the re�nement from the 2�x physical-space resolution to the �x
physical-space resolution is dictated by the wavelet coe�cients in W1. This

is the reasoning which led to WOFD and to the following subroutine which is
at the heart of WOFD. The remainder of the paper is concerned with giving
the reader an idea of how the WOFD grid re�nement software works.

4 Software Implementation

The philosophy of the this paper is to get the reader to �rst try the software
and once the reader is convinced that it is a reliable grid generator, then move
onto the theory. So, let us commence with an examination of the included

WOFD grid generator.
The main subroutine newgr.f performs two major functions. The lines

of code from line 9 to line 13 perform the wavelet analysis producing the

wavelet coe�cients of the input function �, and from line 15 to line 43 the
numerical grid is generated based on these wavelet coe�cients.

4.1 Explanation of Subroutines, line by line

This subsection will explain the grid generation subroutines almost line by
line.
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4.1.1 Generating the Wavelet Coe�cients: lines 9-13

To illustrate, assume that the user has determined that 8 is the maximum

desired ratio between the maximum �x and the minimum �x. As noted

above, this corresponds to 3 wavelet decompositions. As above, let V0 denote

the subspace spanned by scaling functions on the �nest scale. One wavelet

decomposition produces the division of V0 into V1 and W1: V0 = W1 � V1.

Similarly, three wavelet decompositions produces, V0 = W1�W2�W3 � V3.
Each of these wavelet decompositions is performed by the subroutine �lter.f.

The input to �lter.f is the variable Extdata which contains the scaling function
coe�cients for subspace Vi and the output variables of �lter.f are the variables
data and HPF which contain the coe�cients for the subspaces Vi+1 andWi+1,
respectively. The variable is named Extdata because the coe�cients of Vi have

been `extended' to re
ect the boundary conditions. In this version of the
program, the data is extended by adding constant scaling function coe�cient
values to the ends of the vector data by the routine constext.f. Note, if one
desires periodic boundary conditions then one `wraps' the scaling function
coe�cients around such that one extends the vector data by returning to the

beginning of the same vector. Likewise, if one wants a smoother extension
of data then one can write a routine which extends linearly or by some other
higher order polynomial.

4.1.2 Generating the Grid: lines 15-43

The lines of code from 16 to 20 add the grid points which are referred to as
the base grid. That is, these points are evenly-spaced and depend only on the

number of wavelet decompositions one has chosen. For example, if N = 128

and Nd = 3 then the base grid will consist of 16 = 128=23 evenly-spaced
points. If the input function � is smooth with respect to the threshold, th,
then the output grid xo could very well be composed only of the base grid.

The lines of code from 21 to 42 add the wavelet re�nement to the base grid.

Using the standard wavelet notation for the example with 3 decompositions,
V0 = W1 �W2 �W3 � V3, the base grid corresponds to the scaling function

subspace V3 in which all the scaling functions are used. If the spacing between
grid points in V0 is �x then the spacing between grid points in V3 will be

8�x. The addition of the wavelets in W3 which have coe�cients larger in

magnitude than the threshold th will re�ne the grid to a spacing of 4�x
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in these large coe�cient regions. Likewise, adding W2 re�nes to 2�x and

adding W1 re�nes to the �nest scale of �x. Testing the magnitude of the

wavelet coe�cients occurs on line 32 of the code. The variable i
agpoint is

used with iw in order to include a grid point xi(ipnt) if, say, 2=3 of the wavelet

coe�cients in the region around xi(ipnt) are large. This mechanism adds a

kind of `softness' to the grid selection mechanism and appears to work very

well when iw = 1. Line 38 is where the new grid xo is constructed. Lines 44

and 45 simply add the right-hand boundary grid point and function value.

4.1.3 The input and output variables

Input Variables

� xi = The evenly-spaced grid point values.

� � = The evenly-spaced samples of the function which is to be analyzed.
�(1) = value at left-hand boundary. �(N+1) = value at right-hand
boundary. If boundary conditions are periodic, �(1) = �(N+1).

� L = De�nes which wavelet is used. For Daubechies 4, L=4.

� N = The number of points in � minus 1. N is a power of 2.

� th = Threshold to determine which grid points are used. If th < 0 then
all grid points are used. If th = large number, perhaps 10, then only

the grid points on the `coarsest' grid are used.

� Nd = Number of wavelet decompositions, e.g., if Nd = 3, then the ratio
of the maximum �x to the minimum �x is 8 = 23.

� iw = Width of wavelet re�nement stencil. If iw = 1, then the magni-
tude of wavelet coe�cients are checked at three locations from -iw to

iw or at the locations -1, 0, 1 in order to determine if the grid point

at location 0 should be used. So that if one has a hyperbolic system,
or traveling waves, then if iw > 2 one can add grid points by looking
`backwards' and `forwards' for a perturbation which might move into

the region currently being examined. This is a kind of preparation for

the future evolution of the system at hand.
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Output Variables

� xo = The new wavelet-chosen grid. Note that the grid points on the

boundaries are always used. That is, xo(1) = xi(1) and xo(No) =

xi(N+1).

� fo = The function values on the new wavelet-chosen grid.

� No = The number of grid points in the new grid. Note that whereas

`No' counts every grid point, the input variable `N' does not include

the last point on the right hand boundary. This is done to facilitate
the use with periodic as well as non-periodic boundary conditions.

4.2 The Four Subroutines

The following four subroutines provide a stand-alone 1 dimensional WOFD

grid generation package.

4.2.1 Wavelet Analysis and Select Grid: newgr.f

This is the main subroutine which will be called by the user created driver
program.

1 subroutine newgr(xi,�,L,N,th,Nd,iw,xo,fo,No)

2 parameter(Nmax = 260, Lmax = 8, Ndmax = 8)

3 real xi(Nmax),�(Nmax),xo(Nmax),fo(Nmax),h(Lmax),g(Lmax)

4 real HPF(Nmax/2+Lmax,Ndmax),data(Nmax),th,Extdata(Nmax+Lmax)

5 call getcoef(L,h,g)

6 do i = 1,Nmax

7 data(i) = �(i)

8 enddo

9 do idecomp = 1, Nd

10 Ndim = N/(2**(idecomp-1))

11 call constext(data,Ndim,L,Extdata)

12 call �lter(Extdata,h,g,Ndim,L,data,HPF(1,idecomp))

13 enddo

14 igrid = 0

15 do 10, ipnt = 1,N

16 if ( abs( mod(ipnt-1,2**(Nd))) .LT. .00001 ) then
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17 igrid = igrid + 1

18 xo(igrid) = xi(ipnt)

19 fo(igrid) = �(ipnt)

20 endif

21 do 20, idecomp = 1,Nd

22 n1 = abs(ipnt - 2**(idecomp-1) - 1)

23 n2 = 2**(idecomp)

24 if ( abs(mod(n1,n2)) .LT. .00001 ) then

25 index1 = 1+nint(real(n1)/real(n2))

26 i
agpoint = 0

27 do iwiden = -iw, iw

28 iindex = index1 + iwiden

29 if(iindex.LE.1.OR.iindex.GE.N/(2**(idecomp)))then

30 iindex = index1

31 endif

32 if (abs(HPF(iindex,idecomp)).GT.th)then

33 i
agpoint = i
agpoint + 1

34 endif

35 enddo

36 if (i
agpoint .GE. iw+1) then

37 igrid = igrid + 1

38 xo(igrid) = xi(ipnt)

39 fo(igrid) = �(ipnt)

40 endif

41 endif

42 20 continue

43 10 continue

44 xo(igrid+1) = xi(N+1)

45 fo(igrid+1) = �(N+1)

46 No = igrid+1

47 return

48 end

4.2.2 Get Daubechies Wavelet Coe�cients: getcoef.f

This subroutine is called by newgr.f and its only function is to get the wavelet

coe�cients. Included here are the numbers only for the D4 wavelet. Other

wavelet coe�cients can be added by the user. The numerical values for the

coe�cients h(:) in the following subroutine came from [1].
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1 subroutine getcoef(L,h,g)

2 parameter (Lmax = 8)

3 real h(Lmax), g(Lmax)

4 h(1) = .482962913145

5 h(2) = .836516303738

6 h(3) = .224143868042

7 h(4) = -.129409522551

8 do i = 1,L

9 h(i) = h(i)/(sqrt(2.0))

10 enddo

11 do i = 1,L

12 g(i) = (-1)**(i-1) * h(L - i + 1)

13 enddo

14 return

15 end

4.2.3 Apply Wavelet Filter: �lter.f

This subroutine does the actual wavelet �ltering by dividing Extdata into its high

and low components.

1 subroutine �lter(Extdata,h,g,N,L,low,high)

2 parameter (Nmax = 260,Lmax = 8)

3 real low(Nmax/2+Lmax), high(Nmax/2+Lmax)

4 real Extdata(Nmax+Lmax), h(Lmax), g(Lmax)

5 do i = 1, Nmax/2+Lmax

6 low(i) = 0.0

7 high(i)= 0.0

8 enddo

9 do i = 1, N/2 + (L-2)/2

10 do j = 1,L

11 ij = 2*(i-1) + j - (L-2)

12 low(i) = low(i) + h(j) * Extdata(ij+2)

13 high(i) = high(i) + g(j) * Extdata(ij+2)

14 enddo

15 enddo

16 return

17 end
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4.2.4 Apply Boundary Conditions: constext.f

This routine takes care of the boundary conditions by extending the scaling

function coe�cients in an appropriate way. The routine provided here extends

with constant values. The user can de�ne other routines for whatever boundary

conditions are needed.

1 subroutine constext(data,N,L,Extdata)

2 parameter (Nmax = 260,Lmax = 8)

3 real data(Nmax), Extdata(Nmax+Lmax)

4 do i = 1, N

5 Extdata(L/2+i-1) = data(i)

6 enddo

7 do i = 1, L-3

8 Extdata(L/2-i) = data(1)

9 enddo

10 do i = 1, L-1

11 Extdata(N+L/2+i-1)=data(N)

12 enddo

13 return

14 end

5 Doubling the Grid Density

Note that the software included here takes a �ne grid, V0, and chooses from
V0 a subset of points from W1 �W2 �W3 � V3 to obtain a numerical grid.
It is possible that during a numerical simulation that even the �nest grid
�x in V0 is not �ne enough and that a grid spacing �x=2 is needed. This
is possible by adding to V0 the re�nement W0 to get V�1 = V0 �W0. In the

code this can be accomplished by �rst testing the magnitude of the wavelet

coe�cients in the subspace W1 by adding a test statement similar to line 32
in which the magnitude of the numbers in HPF(:,1), corresponding toW1, are
tested against a second threshold number. For example, if th=.001 then one

might decide to double the grid density if magnitude of HPF(:,1)> :01 (The

reader should experiment with these numbers). If this test is true then exit
newgr.f and double of the grid density of xi by interpolation thereby making

N become 2N followed by another call to newgr.f. Note that it is necessary
to double the grid before the data becomes too `rough'. Once numerical

oscillation has begun, it is too late. You must make your threshold numbers
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sensitive enough to `see' to high frequency regions coming and re�ne ahead

of time. This type of intuition is easy to develop with a little practice.

6 2 Dimensional Examples

Applying this grid selection mechanism in higher dimensions is straightfor-

ward. For example, if one's data, perhaps pressure, is stored in a 2 dimen-

sional array, then apply the 1 dimensional wavelet grid selection mechanism

to each column and row. This mechanism will tell the user where grid points
are needed. The user must then choose a set of grid points which contains
the wavelet-generated set. Choosing a given subset of points from the set
recommended by the wavelet analysis will depend on the application and the

numerical method used, but if the set does not contain the wavelet-generated
set of points, the user might �nd that there are features which are left unre-
solved.

The following subsections will illustrate the application of wavelets to
choose grids. The �rst example comes from the original WOFD and the

second example comes from an adaptive spectral method named WOFD2.

6.1 The Original WOFD

The original WOFD is spatially 4th-order accurate. The underlying grid at

each level of re�nement is a uniform grid, see Figures (1) and (2). Note that
the grid has no dangling nodes. That is, di�erentiation occurs through any
neighboring 5 points. At the boundary, the stencil is also �ve points but one
sided. See [3] and [6] for details.

6.2 An Adaptive Spectral Method

The examples given in Figures (3) and (4) come from an adaptive spectral
method named WOFD2, see [7]. WOFD2 adjusts the local grid density and
the order of the local di�erentiation stencil based on wavelet analysis. The

order of the di�erentiation operators could be as high as 32 or as low as

4. Orders above 4 require that the grid near the boundary be chebyshev in
structure in order to implement high order boundary conditions. In other
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Figure 1: A domain which contains a high gradient 
ame front impinging on
a Gaussian pulse.
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Figure 2: The grid selected by wavelets for a high gradient region impinging
on a pulse.
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Figure 3: Gaussian pulse analyzed with wavelets in an adaptive spectral
method.

words, if one wants to implement, say, 20th order boundary conditions then
one must utilize a chebyshev grid near the boundary in order to control the
Runge phenomenon which occurs with evenly-space grid distributions. To

apply wavelet-based grid generation on Chebyshev grids, xi = cos(�i), then
one applies the above based grid generation routine to the dependent variable
f de�ned on the independent variable �i: f(�i). The following plots illustrate
the application of WOFD2 in 2D to a Gaussian pulse entering the domain at
one of the corners. Note that, as above, there are no dangling nodes. Again,

the details of the application of wavelets to the adaptive spectral method
WOFD2 can be found in [7].

6.3 Possible Applications to Finite Elements

The WOFD grid re�nement mechanism and the software included in this

paper can be applied to any 
ow in which one needs grid. The obvious
extension would be to generate triangular grids for �nite element analysis.

In such an application one does not have an underlying �ne grid at hand, but

one can easily interpolate local data to obtain a local uniform grid. That is,
wavelets are ideal for analyzing a domain and telling the user at what scale
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Figure 4: An adaptive Chebyshev grid generated by wavelets for an adaptive
spectral method.

and where various information in the domain is contained. This is the type
of information which is needed in order to choose grids, whether the grids
are triangular or Cartesian.

7 Conclusion

Hopefully it has been illustrated within this paper that wavelets, with their

ability to detect energy of 
ow variables at various scales and locations
throughout a domain, provide a very natural mechanism for grid selection.

In fact, this wavelet-based grid selection mechanism can be used to control
the maximum error, L1 error, throughout the domain. One can simply set

the parameter \th", as described above, to an acceptable error, and one will
�nd at the end of the calculation that the L1 error will be of the same order

of magnitude.

In addition, the underlying grid structure need not be uniform, as in Fig-

ure (2), but can be Chebyshev as in Figure (4), or any other grid structure

as long as one can interpolate to a uniform grid for the grid selection mech-
anism. After the grid has been selected from the uniform set, one simply

15



interpolates back to their desired grid structure.

Finally, this paper contains Fortran source code. It appears that it takes

a very long time for a researcher who is not familiar with wavelets to, �rst,

learn the theory, and, second, write software which works. Hopefully, this

software will prove useful.
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